Relation Between b_{sp} and PM

Presented by:
Willard Richards
Siana Alcorn
Sonoma Technology, Inc.
Petaluma, CA

Presented to:
CRPAQS Data Analysis Workshop
Sacramento, CA
March 9-10, 2004

Relation Between Ambient and Measured b_{sp}

- Sample airflow was heated only when the RH in the scattering chamber exceeded 65% and the heating kept the RH from exceeding about 72%.
- Heater successfully protected the nephelometer from fogs.

Relation Between Ambient and Measured b_{sp}

- No size selective inlet.
- PM_{2.5} sampling efficiency believed to be good, but coarse particle sampling efficiency not characterized.

During Winter in SJV

- Dust is suppressed, so the fine particle tail of the coarse particles makes a smaller contribution to the measured b_{sp}.
- When the RH in the scattering chamber is less than 65%, the light scattering efficiency from regression against PM_{2.5} is typically 5 to 6 m²/g.

Effect of RH

 The following slide shows the light scattering efficiency as a function of RH in the scattering chamber calculated from the measured b_{sp} and BAM PM_{2.5} at Angiola.

Remedy?

- Decreasing the RH threshold for heating has been mentioned.
- Perhaps that would only move the range of variable results to lower RH, which would affect more of the data.
- I favor increasing the residence time between drying and measurement and stronger heating.

During Summer or in Desert

- PM_{2.5} can be attributed to "smog" and the PM_{2.5} tail of the "dust" particles.
- The scattering efficiency of the "dust" PM_{2.5} is roughly 1 m²/g, compared to 5 to 6 m²/g for the "smog" PM_{2.5}.
- Scatter diagrams of b_{sp} versus PM_{2.5}
 look as if produced by a shotgun.

During Summer or in Desert

- PM_{2.5} concentrations do not exceed standards in the SJV during the summer, so the ability to predict PM_{2.5} from b_{sp} data is not as crucial as in the winter.
- All field studies have found that b_{sp} is not well correlated with coarse particle concentrations.

Regression in Summer or Desert

- $b_{sp} = A + E_{2.5} PM_{2.5} + E_C PM_C$
- This equation assumes A, E_{2.5}, and E_C are constant.
- In fact, E_{2.5} decreases with increasing PM_C/ PM_{2.5}.
- The regression analysis accounts for this by assigning E_C a negative value.

Regression Analyses

• $b_{sp} = [Esf + (Esc - Edc)Fsc]Mf$ [(Edf - Esf)Fdf + Edc]Mc

Fsc Fraction of "smog" in coarse size
Fdf Fraction of "dust" in fine size
E Light scattering efficiencies
s "smog" d "dust" f fine c coarse

White et al. (1994) Atmos. Env. 28, 909

Recommendations

- It is recommended that the b_{sp} data be used for PM model validation.
- It should be possible to calculate b_{sp} from the simulated PM data.
- When the RH in the scattering chamber is greater than 65%, the calculated b_{sp} should be equal to or less than the measured b_{sp} .

